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Center for Machine Perception, Dept. of Cybernetics, Faculty of Elec. Eng.

Czech Technical University in Prague, Karlovo nám. 13, 12135 Prague, Czech Rep.
{sochmj1,matas}@cmp.felk.cvut.cz

Abstract

In many computer vision classification problems, both
the error and time characterizes the quality of a decision.
We show that such problems can be formalized in the frame-
work of sequential decision-making. If the false positive and
false negative error rates are given, the optimal strategy
in terms of the shortest average time to decision (number
of measurements used) is the Wald’s sequential probability
ratio test (SPRT). We built on the optimal SPRT test and
enlarge its capabilities to problems with dependent mea-
surements. We show how to overcome the requirements of
SPRT – (i)a priori ordered measurements and (ii) known
joint probability density functions. We propose an algo-
rithm with near optimal time and error rate trade-off, called
WaldBoost, which integrates the AdaBoost algorithm for
measurement selection and ordering and the joint probabil-
ity density estimation with the optimal SPRT decision strat-
egy. The WaldBoost algorithm is tested on the face detec-
tion problem. The results are superior to the state-of-the-art
methods in the average evaluation time and comparable in
detection rates.

1. Introduction

In many computer vision problems such as detection,
both error rates and computational complexity reflected by
time to decision, characterize the quality of a given algo-
rithm. We show that such problems can be formalized in
the framework of sequential decision-making. The optimal
strategy in terms of the shortest average decision time sub-
ject to a constraint on error rates (false positive and false
negative rates) is the Wald’s sequential probability ratiotest
(SPRT). In the paper, we build on Wald’s theory and pro-
pose an algorithm for two-class classification problems with
near optimal trade-off between time and error rate.

Wald’s sequential decisions are based on measurements
that are assumed to be selected and ordereda priori. More-
over, it is assumed that either the measurements are class-
conditionally independent or their joint probability density

functions are known. We show how this limitation can be
overcome by selecting the relevant measurements by Ada-
Boost. The joint conditional density of all measurements,
whose estimation is computationally intractable, is approx-
imated by the class-conditional response of the sequence
of strong classifiers. The choice is justified by asymptotic
properties of AdaBoost trained strong classifier.

The proposed algorithm, called WaldBoost, integrates
AdaBoost-based measurement selection and Wald’s optimal
sequential probability ratio test. The WaldBoost approach
was applied and evaluated on the face detection problem.
On the CMU dataset [4], the results are superior to the
state-of-the-art in average evaluation time and comparable
in detection rates. In the face detection context, the Wald-
Boost algorithm can be also viewed as a theoretically jus-
tifiable ”boosted cascade of classifiers” proposed by Viola
and Jones [8].

To our knowledge, the trade-off between the quality of
solution (error rate) and time-to-decision inherent in detec-
tion problems has not been explicitly formulated as a con-
strained optimization in computer vision literature. “Fo-
cus of attention” (e.g. [7]), cascaded classifier [8], Float-
Boost [3], boosting chain [11] or nesting-structured cas-
cade [10] implicitly minimize the time to decision while
keeping the error rates at a low level. However, the nec-
essary compromise is achieved by ad hoc parameter setting
and no attempt is made to achieve optimality.

The paper is structured as follows. The two-class se-
quential decision-making problem is formulated and its op-
timal solution, the sequential probability ratio test, is de-
scribed in Section 2. The selection and ordering of the mea-
surements and the joint probability density function estima-
tion using AdaBoost is explained in Section 3. In Section 4,
the WaldBoost algorithm is proposed and its application to
the face detection problem is discussed. The experimental
validation of the algorithm is given in Section 5 and the pa-
per is concluded in Section 6.
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2. The Two-class Sequential Decision-making
Problem

Let x be an object belonging to one of two classes
{−1, +1}, and letx1, x2, . . . , be a given ordered sequence
of measurements onx. A sequential decision strategy is
a sequence of decision functionsS = S1, S2, . . ., where
St : (x1, . . . , xt) → {−1, +1, ♯}. The strategyS takes one
measurement at a time and in stept makes a decisionSt

based on(x1, . . . , xt). The ’♯’ sign stands for a “continue”
(do not decide yet) decision1. If a decision is ’♯’, xt+1 is
measured andSt+1 is evaluated. Otherwise, the output ofS
is the class returned bySt.

In two-class classification problems, errors of two kinds
can be made by strategyS. Let us denote byαS the proba-
bility of error of the first kind (x belongs to+1 but is classi-
fied as−1) and byβS the probability of error of the second
kind (x belongs to−1 but is classified as+1).

A sequential strategyS is characterized by its error rates
αS andβS and its average evaluation time

T̄S = E(TS(x)), (1)

where the expectationE is overp(x) andTS(x) is the ex-
pected evaluation time (or time-to-decision) for strategy

TS(x) = argmin
t

(St 6= ♯). (2)

An optimal strategy for the sequential decision making
problem for specifiedα andβ is defined as

S∗ = argmin
S

T̄S (3)

s.t. βS ≤ β,

αS ≤ α.

The sequential decision-making theory was developed
by Wald [9], who proved that the solution of the optimiza-
tion problem (3) is thesequential probability ratio test.

2.1. Sequential Probability Ratio Test

Let x be an object characterized by its class (hidden
state)y ∈ {−1, +1}. The class (or hidden state) is not
observable and has to be determined based on successive
measurementsx1, x2, . . .. Let the joint conditional den-
sity p(x1, . . . , xt|y = c) of the sequence of measurements
x1, ..., xt be known forc ∈ {−1, +1} and for allt.

SPRT is a sequential strategyS∗, which is defined as:

S∗

t =







+1, Rt ≤ B
−1, Rt ≥ A

♯, B < Rt < A
(4)

1In pattern recognition, this is called “the rejection option”

whereRt is the likelihood ratio

Rt =
p(x1, ..., xt|y = −1)

p(x1, ..., xt|y = +1)
. (5)

The constantsA andB are set according to the required
error of the first kindα and error of the second kindβ. Op-
timal A andB are difficult to compute in practice, but tight
bounds are easily derived.

Theorem 1(Wald). A is upper bounded by(1 − β)/α and
B is lower bounded byβ/(1 − α).

Proof. For each sequence of measurements(x1, . . . , xt),
for which SPRT returns the class−1 we get from (4) and (5)

p(x1, . . . , xt|y = −1) ≥ A · p(x1, . . . , xt|y = +1). (6)

Since this holds for all sequences of measurements classi-
fied to class−1 (S∗ = −1), summing over these sequences

P{S∗ = −1|y = −1} ≥ A · P{S∗ = −1|y = +1}. (7)

The term on the left is the probability of correct classifica-
tion of an object from the class−1 and is therefore1 − β.
The term on the right is the probability of incorrect classifi-
cation of an object to the class+1, and is equal toα. After
this substitution and rearranging, we get the upper bound on
A. Repeating this derivation with samples classified to+1
by SPRT, the lower bound onB is derived.

In practical applications, Wald suggests to set the thresh-
oldsA andB to their upper and lower bound respectively

A′ =
1 − β

α
, B′ =

β

1 − α
. (8)

The effect of this approximation on the test error rates
was summarized by Wald in the following theorem.

Theorem 2(Wald). WhenA′ andB′ defined in (8) are used
instead of the optimalA andB, the real error probabilities
of the test change toα′ andβ′ for which

α′ + β′ ≤ α + β. (9)

Proof. From Theorem 1 it follows that

α′

1 − β′
≤

1

A′
=

α

1 − β
, and (10)

β′

1 − α′
≤

1

B′
=

β

1 − α
. (11)

Multiplying the first inequality by(1 − β′)(1 − β) and the
second by(1 − α′)(1 − α) and summing both inequalities,
the result follows.

This result shows that at most one of the probabilitiesα
andβ can be increased and the other has to be decreased by
the approximation.



Theorem 3 (Wald). SPRT (with optimalA and B) is an
optimal sequential test in a sense of the optimization prob-
lem (3).

Proof. The proof is complex. We refer the interested reader
to [9].

Wald analyzed SPRT behavior when the upper boundA′

andB′ is used instead of the optimalA andB. He showed
that the effect on the speed of evaluation is negligible.

However, Wald did not consider the problem of optimal
ordering of measurements, since in all of his applications
the measurements are i.i.d. and the order does not matter.
Secondly, Wald was not concerned with the problem of es-
timating (5) from a training set, since in the i.i.d case

p(x1, . . . , xt|y = c) =

t
∏

q=1

p(xq |y = c) (12)

and thusRt can be computed incrementally from a one di-
mensional probability density function.

3. SPRT for non i.i.d. Samples

For dependent measurements, which is the case in many
computer vision tasks, SPRT can still be used if the likeli-
hood ratioRt, equation (5), can be estimated. However, that
usually encompasses many-dimensional density estimation,
which becomes infeasible even for a moderate number of
measurements.

We suggest to use the AdaBoost algorithm for measure-
ment selection and ordering and for the conditional density
estimation. This is described in the following section. In
Section 3.2 an approximation for the likelihood ratio esti-
mation is proposed for such (statistically dependent) mea-
surements. The final algorithm combining SPRT and Ada-
Boost is described in Section 4.

3.1. AdaBoost

The AdaBoost algorithm [5, 1]2 is a greedy learn-
ing algorithm. Given a labelled training setT =
{(x1, y1), . . . , (xl, yl)}, whereyi ∈ {−1, +1}, and a set
of weak classifiersH, AdaBoost produces a classifier of the
form

HT (x) =

T
∑

t=1

h(t)(x), (13)

whereh(t) ∈ H are selected weak classifiers and usually
T ≪ |H|. Weak classifiers can be of an arbitrary complex-
ity but are often chosen to be very simple.

2The real valued version is used.

In AdaBoost training, an upper bound on the training er-
ror is minimized. The upper bound has an exponential form

J(HT ) =
∑

i

e−yiHT (xi) =
∑

i

e−yi

P

T

t=1 h(t)(xi). (14)

Training of the strong classifier runs in a loop. One weak
classifier is selected and added to the sum in each loop cy-
cle. A selected weak classifier is the one which minimizes
the exponential loss function (14)

h(T+1) = arg min
h

J(HT + h), (15)

It has been shown [5, 2] that the weak classifier minimiz-
ing (15) is

h(T+1) =
1

2
log

P (y = +1|x, w(T )(x, y))

P (y = −1|x, w(T )(x, y))
, (16)

wherew(T )(x, y) = e−yHT (x) is a weight of a sample
(x, y) at cycleT . Furthermore,J is guaranteed to be low-
ered in each step if weighted error ofh(T+1) is below 0.5.

As shown in [2], choosing a weak classifier according
to (16) in each cycle of the AdaBoost learning converges
asymptotically to

lim
T→∞

HT (x) = H̃(x) =
1

2
log

P (y = +1|x)

P (y = −1|x)
. (17)

Note thatH̃ is proportional to the likelihood ratio (5). In the
following, the outputs of selected weak classifiers are taken
as measurements used in SPRT and the connection between
equations (17) and (5) is used to determine the thresholdsA
andB.

3.2. Likelihood Ratio Estimation with AdaBoost

The likelihood ratio (5) computed on the outputs of weak
classifiers found by AdaBoost has the form

Rt(x) =
p(h(1)(x), ..., h(t)(x)|y = −1)

p(h(1)(x), ..., h(t)(x)|y = +1)
, (18)

whereh(i)(x) was substituted forxi. Nevertheless, the out-
puts of the weak classifiers cannot be treated as statistically
independent.

To avoid the computation ofRt(x) involving a high di-
mensional density estimation, we propose to approximate it
so that this task simplifies to a one dimensional likelihood
ratio estimation. Thet-dimensional space is projected into
a one dimensional space by the strong classifier functionHt

(see equation (13)). All points(h(1), ..., h(t)) are projected
to a value given by the sum of their individual coordinates.
Using this projection, the ratio (18) is estimated by

Rt(x) ∼= R̂t(x) =
p(Ht(x)|y = −1)

p(Ht(x)|y = +1)
. (19)



Justification of this approximation can be seen from
equation (17) which can be rewritten using Bayes formula
to the form

H̃(x) = −
1

2
log R(x) +

1

2
log

P (+1)

P (−1)
. (20)

Thus, in the asymptotic case, the strong classifier is related
directly to the likelihood ratio. In particular, it maps all
points with the same likelihood ratio to the same value of
H̃. Hence, the ratio in (19) is exactly equal the likelihood
ratio in the asymptotic case. For the non-asymptotic case
we adopt the assumption that a similar relation holds ap-
proximately betweenHt(x) andR̂t(x). Equation (19) sim-
plifies the problem toone dimensionaldensity estimation,
for which we adopted the Parzen windows technique (see
below).

Having obtained the likelihood ratio estimatêRt, the
SPRT can be applied directly. Assuming monotonicity of
the likelihood ratio, only two thresholds are needed onHt

values. These two thresholdsθ(t)
A andθ

(t)
B , each one cor-

responding to one of the conditions in (4), are determined
uniquely by the boundsA andB. The SPRT then becomes

S∗

t =











+1, Ht(x) ≥ θ
(t)
B

−1, Ht(x) ≤ θ
(t)
A

♯, θ
(t)
A < Ht(x) < θ

(t)
B .

(21)

The inequalities are inverted sinceHt is proportional to
−R̂t (see equation (20)).

The approximation (19) is approaching the correct value
with increasingt. However, if for low t inaccurateRt is
used for estimation of the thresholdsθ

(t)
A andθ

(t)
B , the con-

ditionsαS < α andβS < β may be violated. To reduce this
effect, we estimate the likelihood ratio in the following way.
The densitiesp(Ht(x)|y = +1) andp(Ht(x)|y = −1) are
estimated not from the training set directly, but from an in-
dependent validation set to get an unbiased estimate. More-
over, the estimation uses the Parzen windows technique
with the kernel width set according to theoversmoothing
rule for the Gaussian kernel [6]

hOS = 1.144σn−1/5, (22)

whereσ is the sample standard deviation andn the number
of samples. ThehOS is an upper bound on an optimal kernel
width and thus, the density estimate is smoother than nec-
essary for an optimal density estimation. Due to this con-
servative strategy, the evaluation time can be prolonged but
the danger of wrong and irreversible decisions is reduced.

Algorithm 1 WaldBoost Classification

Given: h(t), θ
(t)
A , θ

(t)
B , γ (t = 1, . . . , T )

Input: a classified objectx.
For t = 1, . . . , T (SPRT execution)

If Ht(x) ≥ θ
(t)
B , classifyx to the class+1 and terminate

If Ht(x) ≤ θ
(t)
A , classifyx to the class−1 and terminate

end
If HT (x) > γ, classifyx as+1. Classifyx as−1 other-
wise.

4. WaldBoost

4.1. Classification

The structure of the WaldBoost classifier is summarized
in Algorithm 1. The classification executes the SPRT test
via a trained strong classifierHT with a sequence of thresh-
olds θ

(t)
A andθ

(t)
B . If Ht exceeds the respective threshold,

a decision is made. Otherwise, the next weak classifier is
taken. If a decision is not made withinT cycles, the input is
classified by thresholdingHT on a valueγ specified by the
user.

For practical reasons, only limited number of weak clas-
sifiers is used, which implies truncation of the sequential
test. Wald [9] studies the effect of truncation of the sequen-
tial test procedure, however, his derivations hold only for
cases where i.i.d. measurements are taken. For that case, he
shows, how the effect of truncation on the false negative and
false positive rates of the test declines with number of mea-
surements taken. In our implementation, the final threshold
is left unspecified. It is used to control the false positive and
the false negative rate in the application. It is also used ina
ROC curve generation in the experiment section.

4.2. Learning with Bootstrapping

WaldBoost learning is summarized in Algorithm 2. Be-
side a labelled training set, two additional parameters spec-
ifying desired final false negative rateα and false positive
rateβ of the output classifier have to be specified. These
rates are used to compute the two thresholdsA and B
according to equation (8). They correspond to the final
false positive and detection rates in the Viola-Jones cascade
building [8]. Contrary to Viola-Jones, no stage false posi-
tive and detection rates are required.

The training runs in a loop, where the first step is a stan-
dard AdaBoost search for the best weak classifier (Step 1),
as described in Section 3.1. Then, the likelihood ratio is es-
timated (Step 2) and the thresholdsθ

(t)
A andθ

(t)
B are found

(Step 3), as described in Section 3.2. Based on the thresh-
olds, the training set is pruned (Step 4) and then, pruned



Algorithm 2 WaldBoost Learning with Bootstrapping

Input: (x1, y1), ..., (xl, yl); xi ∈ X , yi ∈ {−1, 1},
desired final false negative rateα and false
positive rateβ.

Initialize weightsw1(xi, yi) = 1/l
SetA = (1 − β)/α andB = β/(1 − α)
For t = 1, ..., T

1. Chooseht according to equation (16),

2. Estimate the likelihood ratioRt according to eq. (19)

3. Find thresholdsθ(t)
A andθ

(t)
B

4. Throw away samples from training set for which
Ht ≥ θ

(t)
B or Ht ≤ θ

(t)
A

5. Sample new data into the training set

end
Output: strong classifierHT and thresholdsθ(t)

A andθ
(t)
B .

training set is enlarged again by newly bootstrapped sam-
ples (Step 5). Step 4 and 5 are similar to the cascade build-
ing procedure [8] with the substantial difference that the
pruning and new data collection in the WaldBoost learning
are run after every weak classifier is trained.

4.3. WaldBoost Applied to Face Detection

The proposed algorithm can be used in any classification
task. Nevertheless, it is specially designed for tasks where
the classification time is an important factor. In our exper-
iments (Section 5) the abilities of the proposed algorithm
are demonstrated on the face detection task. Except for the
time constraints, the face detection problem has two other
properties: (i) highly unbalanced face and background class
sizes and complexities, and (ii) particular requirements on
error of the first and the second kind.

The face class size is relatively small and compact com-
pared to the background class. The face class samples are
difficult to collect and too much pruning can reduce the size
of the face training set irreversibly. The background class,
on the other hand, consists of all images except the images
of a face itself. Such a huge and complex class cannot be
represented by a small training set sufficiently. So, the goal
of the learning is to explore the largest possible subspace of
the background class while keeping most of the face sam-
ples during the learning process.

The second property of the face detection is that error
of the first kind (missed face) is considered as more serious
than error of the second kind (falsely detected face). An
ideal way of training a classifier would be to require a zero
false negative rate and the smallest possible false positive
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Figure 1. ROC curve comparison of the WaldBoost algorithm with
the state-of-the-art methods.

rate.
Having the above properties in mind, WaldBoost can be

specified in the following way. Let the required false posi-
tive rateβ is set to zero and the required false negative rateα
to some small constant (note the inverse initialization com-
pared to the above reasoning). In this setting, equations (8)
reduce to

A =
1 − 0

α
=

1

α
, B =

0

1 − α
= 0 (23)

and the SPRT strategy (4) becomes

S∗

t =







+1, Rt ≤ 0
−1, Rt ≥ 1/α

♯, 0 < Rt < 1/α
(24)

SinceRt is always positive, the algorithm will never clas-
sify a sample to the face class. The only allowed decision is
the classification to the background class. Hence, the learn-
ing process will never prune the face part of the training set
while pruning the background part. Such initialization thus
leads to an exploration of the background class (by pruning
and new sample collection) while working with a small and
unchanging face training set. Moreover, the detection rate
of the final classifier is assured to be1 − α while the false
positive rate is progressively reduced by each training cycle.

5. Experiments

The proposed WaldBoost algorithm was tested on the
frontal face detection problem. The classifier was trained
on 6350 face images divided into a training and a valida-
tion set. In each training cycle, the non-face part of the



training and the validation set included 5000 non-face sam-
ples sampled randomly from a pool of sub-windows from
more than 3000 non-face images. The weak classifier setH
used in training is the same as in [8] but WaldBoost isnot
feature-specific and any other weak classifiers can be used.
Unlike [8], the weak classifiers are real valued (defined by
equation (16)) and implemented as in [3]. The allowed false
negative rateα was set to5·10−4. The training was run with
T = 600, i.e. till the strong classifier consisted of 600 weak
classifiers.

The WaldBoost classifier was tested on the MIT+CMU
dataset [4] consisting of 130 images containing 507 labeled
faces. A direct comparison with the methods reported in
literature is difficult since they use different subsets of this
dataset with the most difficult faces removed (about 5 % in
[3, 11]!). Nevertheless, we tested the WaldBoost classifier
on both full and reduced test sets with similar results, so we
report the results on the full dataset and plot them in one
graph with the other methods (see Figure 1). However, the
results of the other methods are not necessarily mutually
comparable.

The speed and the error rates of a WaldBoost classifier
are influenced by the classifier length. To examine this ef-
fect, four classifiers of different lengths (300, 400, 500 and
600 weak classifiers) were compared. The average evalua-
tion timeT̄S (for definition see (1)) for these four classifiers
is reported in Table 1. As expected, the average evaluation
time decreases when less weak classifiers are used. How-
ever, shortening of the classifier affects the detection rates
as well. The ROC curves for the four classifiers are depicted
in Figure 2. Detection rates are comparable for the classi-
fiers consisting of 400, 500 and 600 weak classifiers but the
detection rate drops significantly when only 300 weak clas-
sifiers are used. Thus, using the classifier consisting of 400
weak classifiers only may be preferred for its faster evalu-
ation. However, further reducing the classifier length leads
to a substantial detection results degradation.

For a comparison of the WaldBoost classifier length with
the other methods see Table 2. From the compared methods,
the WaldBoost classifier needs the least number of weak
classifiers, or in other words it produces the most compact
classifier.

The bottom row of Table 2 shows the average evalua-
tion times to decision̄TS (sometimes reffered to as the aver-
age number of weak classifiers evaluated) for the compared
methods. The WaldBoost learning results in the fastest clas-
sifier among the compared methods except for the Viola-
Jones method which, despite its high speed gains signifi-
cantly worse detection results.

To conclude the experiments, the WaldBoost algorithm
applied to the face detection problem reduced the number
of measurements needed for a reliable classification. The
detection rates reached by the proposed algorithm are com-

#wc 600 500 400 300
T̄S 13.92 12.46 10.84 9.57

Table 1. Speed for different length WaldBoost classifiers.

Method WB VJ[8] Li[3] Xiao[11] Wu[10]

#wc 400 4297 2546 700 756
T̄S 10.84 8 (18.9) 18.1 N/A

Table 2. The number of weak classifiers used and a speed com-
parison with the state-of-the-art methods. The parentheses around
T̄S of Li’s method indicate that this result was not reported by the
authors but in [11].

parable to the state-of-the-art methods. The only method
outperforming the proposed algorithm in the quality of
detection is the “nesting-structured cascade” approach by
Wu [10]. This can be caused by different features used, dif-
ferent subset of the MIT+CMU dataset used or any other
implementation details.

6. Summary and Conclusions

In this paper, the two-class classification problems with
a decision quality and time trade-off are formulated in the
framework of the sequential decision-making. We adopted
the optimal SPRT test and enlarged its applicability to prob-
lems with dependent measurements.

In the proposed WaldBoost algorithm, the measurements
are selected and ordered by the AdaBoost algorithm. The
joint probability density function is approximated by the
class-conditional response of the sequence of strong clas-
sifiers. To reduce the effect of inaccurate approximation
in early cycles of training, a conservative method using
Parzen windows with a kernel width set according to the
oversmoothing rule was used.

The proposed algorithm was tested on the face detection
problem. On a standard dataset, the results are superior to
the state-of-the-art methods in average evaluation time and
comparable in detection rates. In the face detection context,
the WaldBoost algorithm can be also viewed as a theoret-
ically justifiable ”boosted cascade of classifiers” proposed
by Viola and Jones [8].
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