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Abstract functions are known. We show how this limitation can be
overcome by selecting the relevant measurements by Ada-
In many computer vision classification problems, both Boost. The joint conditional density of all measurements,
the error and time characterizes the quality of a decision. whose estimation is computationally intractable, is agpro
We show that such problems can be formalized in the frame-dmated by the class-conditional response of the sequence
work of sequential decision-making. If the false positivé a  of strong classifiers. The choice is justified by asymptotic
false negative error rates are given, the optimal strategy properties of AdaBoost trained strong classifier.
in terms of the shortest average time to decision (number
of measurements used) is the Wald's sequential probability The proposed algorithm, called WaldBoost, integrates
ratio test (SPRT). We built on the optimal SPRT test and AdaBoost-based measurement selection and Wald’s optimal
enlarge its capabilities to problems with dependent mea- sequential probability ratio test. The WaldBoost approach
surements. We show how to overcome the requirements ofvas applied and evaluated on the face detection problem.
SPRT - (i)a priori ordered measurements and (i) known On the CMU dataset [4], the results are superior to the
joint probability density functions. We propose an algo- state-of-the-art in average evaluation time and comparabl
rithm with near optimal time and error rate trade-off, calle  in detection rates. In the face detection context, the Wald-
WaldBoost, which integrates the AdaBoost algorithm for Boost algorithm can be also viewed as a theoretically jus-
measurement selection and ordering and the joint probabil- tifiable "boosted cascade of classifiers” proposed by Viola
ity density estimation with the optimal SPRT decision strat and Jones [8].
egy. The WaldBoost algorithm is tested on the face detec-

tion problem. The results are superior to the state-of-iie- To our knowledge, the trade-off between the quality of
methods in the average evaluation time and comparable insojution (error rate) and time-to-decision inherent inedet
detection rates. tion problems has not been explicitly formulated as a con-
strained optimization in computer vision literature. “Fo-
1. Introduction cus of attention” (e.g. [7]), cascaded classifier [8], Foat

Boost [3], boosting chain [11] or nesting-structured cas-

In many Computer vision prob|ems such as detection, cade [10] lmpI|C|tIy minimize the time to decision while
both error rates and computational complexity reflected by keeping the error rates at a low level. However, the nec-
time to decision, characterize the quality of a given algo- €ssary compromise is achieved by ad hoc parameter setting
rithm. We show that such problems can be formalized in @nd no attempt is made to achieve optimality.
the framework of sequential decision-making. The optimal
strategy in terms of the shortest average decision time sub- The paper is structured as follows. The two-class se-
ject to a constraint on error rates (false positive and falsequential decision-making problem is formulated and its op-
negative rates) is the Wald’s sequential probability reggi timal solution, the sequential probability ratio test, - d
(SPRT). In the paper, we build on Wald’s theory and pro- scribed in Section 2. The selection and ordering of the mea-
pose an algorithm for two-class classification problemblwit surements and the joint probability density function eatim

near optimal trade-off between time and error rate. tion using AdaBoost is explained in Section 3. In Section 4,
Wald’s sequential decisions are based on measurementthe WaldBoost algorithm is proposed and its application to
that are assumed to be selected and ordaferibri. More- the face detection problem is discussed. The experimental

over, it is assumed that either the measurements are classralidation of the algorithm is given in Section 5 and the pa-
conditionally independent or their joint probability dégs  per is concluded in Section 6.



2. The Two-class Sequential Decision-making whereR; is the likelihood ratio
Problem

Rt: p(xlv"'vxth'/: _1) (5)

. . 1, Tily = +1)
Let x be an object belonging to one of two classes Pl tly )

{—1,+1}, and letry, 29, ..., be a given ordered sequence The constantsl and B are set according to the required
of measurements on. A sequential decision strategy is error of the first kindx and error of the second kingl Op-
a sequence of decision functiods= S, S5-,..., where timal A and B are difficult to compute in practice, but tight
S, (x1,...,2:) — {—1,+1,4}. The strategys takes one  bounds are easily derived.
measurement at a time a?,d in stemakes a d“eCiSiQSt . Theorem 1(Wald). A is upper bounded bl — 3)/a and
based or{z1,...,z:). The '’ sign stands for a “continue Bis lower bounded by/(1 — )
(do not decide yet) decision If a decision is &', z;; is '
measured and;; is evaluated. Otherwise, the output®f  Proof. For each sequence of measuremdnts ..., x:),
is the class returned hy;. for which SPRT returns the classl we get from (4) and (5)
In two-class classification problems, errors of two kinds
can be made by strategy Let us denote by s the proba- p(r, . mily = =1) =2 A-plar,.. iy = +1). (6)
bility of error of the first kind  belongs to+1 but is classi-
fied as—1) and bygSs the probability of error of the second
kind (z belongs to-1 but is classified ag-1).
A sequential strategy is characterized by its errorrates  P{S* = —1|ly= -1} > A- P{S* = —1|y = +1}. (7)
ag andfBs and its average evaluation time

Since this holds for all sequences of measurements classi-
fied to class-1 (S* = —1), summing over these sequences

The term on the left is the probability of correct classifica-
Ts = E(Ts(z)), (1) tion of an object from the class1 and is thereforg — j.

The term on the right is the probability of incorrect classifi
where the expectatiofy' is overp(z) andT’s(z) is the ex-  cation of an object to the classl, and is equal tev. After
pected evaluation time (or time-to-decision) for strategy  this substitution and rearranging, we get the upper bound on

A. Repeating this derivation with samples classified-tio

Ts(x) = argmin(S; # 7). (2) by SPRT, the lower bound aft is derived. 0
An optimal strategy for the sequential decision making  |n practical applications, Wald suggests to set the thresh-
problem for specifiedr and is defined as olds A and B to their upper and lower bound respectively
S* = argmsinfg 3) A — 1-p B — p ®)
a 1—a’
st. fs < 5, The effect of this approximation on the test error rates
as < o was summarized by Wald in the following theorem.

The sequential decision-making theory was developedTheorem 2(Wald). WhenA’ and B’ defined in (8) are used
by Wald [9], who proved that the solution of the optimiza- instead of the optimall and B, the real error probabilities
tion problem (3) is thesequential probability ratio test of the test change t@’ and 3’ for which

2.1. Sequential Probability Ratio Test o +f <atp ©)

. ) . ) Proof. From Theorem 1 it follows that
Let = be an object characterized by its class (hidden

state)y € {—1,+1}. The class (or hidden state) is not o < 1 __« and (10)
observable and has to be determined based on successive 1-8 A 1-p3
measurements;, zz,.... Let the joint conditional den- o 1 Jé]
sity p(z1, ..., x|y = ¢) of the sequence of measurements 1o = B 1_a (11)
Z1, ..., x¢ be known forc € {—1,+1} and for all¢. o o i ,
SPRT is a sequential strate§y, which is defined as: Multiplying the first inequality by(1 — 4")(1 — §) and the
second by(1 — o/)(1 — «) and summing both inequalities,
+1, R;<B the result follows. O
5 = { t’ gtjé < A @ This result shows that at most one of the probabilities

andg can be increased and the other has to be decreased by
1In pattern recognition, this is called “the rejection optio the approximation.




Theorem 3 (Wald). SPRT (with optimald and B) is an In AdaBoost training, an upper bound on the training er-
optimal sequential test in a sense of the optimization prob- ror is minimized. The upper bound has an exponential form

lem (3). T L0

J(Hp) = e viHr@) =N ey M0 - (14)
Proof. The proofis complex. We refer the interested reader 3 3
to [9]. O

Training of the strong classifier runs in a loop. One weak
Wald analyzed SPRT behavior when the upper badhd  classifier is selected and added to the sum in each loop cy-
and B’ is used instead of the optimdlandB. He showed  cle. A selected weak classifier is the one which minimizes
that the effect on the speed of evaluation is negligible. the exponential loss function (14)
However, Wald did not consider the problem of optimal .
ordering of measurements, since in allpof his appli(F:)ations RITD = arg min J(Hr + h), (15)
the measurements are i.i.d. and the order does not matter.

Secondly, Wald was not concerned with the problem of es- It has been shown [5, 2] that the weak classifier minimiz-

timating (5) from a training set, since in the i.i.d case ing (15) is
= (T) (g
; pa+n = Ly, P +1|a:,w(T)(a",y))7 (16)
p(xl,...,a:t|y=c)=Hp(a:q|y=c) (12) 2 7 Py =1z, w)(z,y))

=1 wherew™) (z,y) = e ¥Hr(*) is a weight of a sample

and thusR; can be computed incrementally from a one di- (z,y) at cycleT'. Furthermore,/ is guaranteed to be low-

mensional probability density function. ered in each step if weighted errorigf +1) is below 0.5.
As shown in [2], choosing a weak classifier according
3. SPRT for non i.i.d. Samples to (16) in each cycle of the AdaBoost learning converges

asymptotically to

For dependent measurements, which is the case in many lim Hr(z) = H(z) = llog P(y = +1|x)

computer vision tasks, SPRT can still be used if the likeli- T—o0 2 " Py=—1z)

hood ratioR;, equation (5), can be estimated. However, that . ] o )

usually encompasses many-dimensional density estimationNote thatH is proportionalto the likelihood ratio (5). In the

which becomes infeasible even for a moderate number offollowing, the outputs of selected weak classifiers arertake

measurements. as measurements used in SPRT and the connection between
We suggest to use the AdaBoost algorithm for measure-€gquations (17) and (5) is used to determine the threshblds

ment selection and ordering and for the conditional density andB.

estimation. This is described in the following section. In o . . . .

Section 3.2 an approximation for the likelihood ratio esti- 3-2- Likelihood Ratio Estimation with AdaBoost

mation is proposed for such (statistically dependent) mea-

surements. The final algorithm combining SPRT and Ada-  The likelihood ratio (5) computed on the outputs of weak
Boost is described in Section 4. classifiers found by AdaBoost has the form

@), kO )y = 1)
p(hM(z),....,h®(z)|ly = +1)’

The AdaBoost algorithm [5, %]is a greedy learn-  whereh(®) (z) was substituted far;. Nevertheless, the out-
ing algorithm.  Given a labelled training sef = puts of the weak classifiers cannot be treated as statlgtical
{(z1,y1),..., (z1,y)}, wherey; € {—1,+1}, and a set  independent.
of weak classifierg{, AdaBoost produces a classifier of the To avoid the computation aR; () involving a high di-

(17)

3.1. AdaBoost Ri(x)

(18)

form mensional density estimation, we propose to approximate it
T so that this task simplifies to a one dimensional likelihood
Hy(x) = Z B® (), (13) ratio es'timatic')n. The-dimensional space is projected into
P aone dimensional space by the strong classifier fundfion

(see equation (13)). All pointg,(V), ..., h(")) are projected
whereh® ¢ H are selected weak classifiers and usually to a value given by the sum of their individual coordinates.
T < |H|. Weak classifiers can be of an arbitrary complex- Using this projection, the ratio (18) is estimated by
ity but are often chosen to be very simple.

A p(H:(z)ly = —1)

) S ) = iy = 1)

(19)

2The real valued version is used.



Justification of this approximation can be seen from Algorithm 1 WaldBoost Classification

equation (17) which can be rewritten using Bayes formula Given: h(® 91(;6) eg) N (t=1,....7)
to the form Input: a classified object.
Fort=1,...,T (SPRT execution)
H(z) = _% log R(z) + %1Og ]JjHi)_ (20) If He(x) > 9§;>, classifyz to the classt+1 and terminate
(=1) If Hi(z) < Hfj), classifyzx to the class-1 and terminate
end

Thus, in the asymptotic case, the strong classifier is late |f H,(x) > ~, classifyz as+1. Classifyz as—1 other-
directly to the likelihood ratio. In particular, it maps all wise.

points with the same likelihood ratio to the same value of

H. Hence, the ratio in (19) is exactly equal the likelihood

ratio in the asymptotic case. For the non-asymptotic case4. WaldBoost

we adopt the assumption that a similar relation holds ap-

proximately betweeitl, (z) andz, (). Equation (19) sim-  4.1. Classification

plifies the problem tane dimensionadlensity estimation,

for which we adopted the Parzen windows technique (see The structure of the WaldBoost classifier is summarized

below). A in Algorithm 1. The classification executes the SPRT test
Having obtained the likelihood ratio estimat&, the  via a trained strong classifiéf with a sequence of thresh-
SPRT can be applied directly. Assuming monotonicity of g)qs 91(46) andeg). If H, exceeds the respective threshold,
the likelihood ratio, only two thresholds are neededin 5 decision is made. Otherwise, the next weak classifier is
values. These two threshold§’ and¢{}, each one cor-  taken. If a decision is not made withicycles, the input is
responding to one of the conditions in (4), are determined classified by thresholding/ on a valuey specified by the
uniquely by the boundd andB. The SPRT then becomes uyser.
For practical reasons, only limited number of weak clas-
1, Hi(z)> o) sifiers is used, Which implies truncation.of the sequential
gr _1’ H () ; 93) 21) test. Wald [9] studies the effect of truncation of the sequen
¢ ’ (ﬁ) ="7A ® tial test procedure, however, his derivations hold only for
g, 04 < Hi(z) <Oy cases where i.i.d. measurements are taken. For that case, he
shows, how the effect of truncation on the false negative and
The inequalities are inverted sindé; is proportional to false positive rates of the test declines with number of mea-
— R, (see equation (20)). surements taken. In our implementation, the final threshold
is left unspecified. Itis used to control the false positind a
the false negative rate in the application. It is also usea in
ROC curve generation in the experiment section.

The approximation (19) is approaching the correct value
with increasingt. However, if for lowt inaccurateR; is
used for estimation of the thresholﬁfé) andeg), the con-
ditionsag < aandBs < @ may be violated. To reduce this
effect, we estimate the likelihood ratio in the followingyva
The densitiep(H;(x)|y = +1) andp(H(x)|y = —1) are
estimated not from the training set directly, but from an in- ~ WaldBoost learning is summarized in Algorithm 2. Be-
dependent validation set to get an unbiased estimate. Moreside a labelled training set, two additional parameters-spe
over, the estimation uses the Parzen windows techniquefying desired final false negative rateand false positive

with the kernel width set according to tlersmoothing ~ rate of the output classifier have to be specified. These
rule for the Gaussian kernel [6] rates are used to compute the two thresholdsind B

according to equation (8). They correspond to the final
false positive and detection rates in the Viola-Jones chesca
building [8]. Contrary to Viola-Jones, no stage false posi-
tive and detection rates are required.

whereo is the sample standard deviation anthe number The training runs in a loop, where the first step is a stan-
of samples. Théog is an upper bound on an optimal kernel dard AdaBoost search for the best weak classifier (Step 1),
width and thus, the density estimate is smoother than nec-as described in Section 3.1. Then, the likelihood ratiois es
essary for an optimal density estimation. Due to this con- timated (Step 2) and the threshol@(}) andeg) are found
servative strategy, the evaluation time can be prolongéd bu (Step 3), as described in Section 3.2. Based on the thresh-
the danger of wrong and irreversible decisions is reduced. olds, the training set is pruned (Step 4) and then, pruned

4.2. Learning with Bootstrapping

hos = 1.1440n~1/5, (22)



Algorithm 2 WaldBoost Learning with Bootstrapping t

InpUt: (xlayl)v ceey (xla yl)’ T € X? Yi € {_]—7 ]-}'
desired final false negative rateand false
positive rates.

0.98 q

Initialize weightsw (x;,y;) = 1/1
SetA = (1—f)/aandB = /(1 — «)
Fort=1,..,T

1. Choose,; according to equation (16),

detection rate

2. Estimate the likelihood rati®&; according to eq. (19)

— Viola—_Jones _[9]
3. Find thresholdéf:) and()g) 1 " Pouosst
I = Wu[11]
4. Throw away samples from training set for which ool S ekt
(t) (t) 0 100 200 300 400 500 600 700 800 900 1000
Ht > 9B or Ht < 9A false positives

5. Sample new data into the training set
end Figure 1. ROC curve comparison of the WaldBoost algorithiin wi
Output: strong classifiefl; and threshold§'” ands!?. the state-of-the-art methods.

rate.

training set is enlarged again by newly bootstrapped sam-  Haying the above properties in mind, WaldBoost can be
ples (Step 5). Step 4 and 5 are similar to the cascade buildspecified in the following way. Let the required false posi-
ing procedure [8] with the substantial difference that the e rates is set to zero and the required false negativedate

pruning and new data collection in the WaldBoost learning o some small constant (note the inverse initialization €om

are run after every weak classifier is trained. pared to the above reasoning). In this setting, equations (8
reduce to
4.3. WaldBoost Applied to Face Detection -0 1 0
A=—— =2, B= =0 (23)
The proposed algorithm can be used in any classification @ @ 1-a
task. Nevertheless, it is specially designed for tasks &her and the SPRT strategy (4) becomes
the classification time is an important factor. In our exper-
iments (Section 5) the abilities of the proposed algorithm +1, R, <0
are demonstrated on the face detection task. Except for the Si={-1, R=1/a (24)
time constraints, the face detection problem has two other §, 0<R <1/a

properties: (i) highly unbalanced face and backgroundsclas

sizes and complexities, and (ii) particular requirememts o = S
P (i) p g sify a sample to the face class. The only allowed decision is

error of the first and the second kind. the classification to the back del H thed
The face class size is relatively small and compact com-. € classilication fo the background class. Hence, theJearn

pared to the background class. The face class samples ard'd Process will never prune the face part 0 f t'he: tra'ining set
difficult to collect and too much pruning can reduce the size while pruning the background part. Such initializationghu

of the face training set irreversibly. The background class leads to an exploration 9f the bgckgroqnd c[ass (by pruning
on the other hand, consists of all images except the imagesand new ;ample Coll_ezgtlon) while working with & smgll and
of a face itself. Such a huge and complex class cannot beunchan_gmg facg Fral_mng set. Moreover, th? detection rate
represented by a small training set sufficiently. So, the goa of th? final c!assnﬁer IS a_lssured to be- o while th.e .false
of the learning is to explore the largest possible subsphce o positive rate is progressively reduced by each trainingecyc
the background class while keeping most of the face sam- )
ples during the learning process. 5. Experiments

The second property of the face detection is that error
of the first kind (missed face) is considered as more serious The proposed WaldBoost algorithm was tested on the
than error of the second kind (falsely detected face). An frontal face detection problem. The classifier was trained
ideal way of training a classifier would be to require a zero on 6350 face images divided into a training and a valida-

false negative rate and the smallest possible false pesitiv tion set. In each training cycle, the non-face part of the

SinceR; is always positive, the algorithm will never clas-



training and the validation set included 5000 non-face sam- #wc || 600 | 500 | 400 | 300
ples sampled randomly from a pool of sub-windows from Ty || 13.92| 12.46| 10.84| 9.57
more than 3000 non-face images. The weak classifigfset
used in training is the same as in [8] but WaldBoostas$
feature-specific and any other weak classifiers can be used.
Unlike [8], the weak classifiers are real valued (defined by | Method|| WB | VJ[8] | Li[3] | Xiao[11] | Wu[10] |

Table 1. Speed for different length WaldBoost classifiers.

equation (16)) and implemented as in [3]. The allowed false [ #wc 400 | 4297 | 2546 700 756
negative rater was set td-10~4. The training was run with Ts 10.84] 8 (18.9) 18.1 N/A

T = 600, i.e. till the strong classifier consisted of 600 weak

classifiers. Table 2. The number of weak classifiers used and a speed com-

The WaldBoost classifier was tested on the MIT+CMU Parison with the state-of-the-art methods. The parenghasmind
dataset [4] consisting of 130 images containing 507 labeled?s of Li's mgthod indicate that this result was not reported hmy t
faces. A direct comparison with the methods reported in 2uthors butin [11].
literature is difficult since they use different subsetshié t
dataset with the most difficult faces removed (about 5% in
[3, 11])). Nevertheless, we tested the WaldBoost classifier Parable to the state-of-the-art methods. The only method
on both full and reduced test sets with similar results, so we OUtPerforming the proposed algorithm in the quality of
report the results on the full dataset and plot them in one d€tection is the “nesting-structured cascade” approach by

graph with the other methods (see Figure 1). However, theWWu [10]. This can be caused by different features used, dif-

results of the other methods are not necessarily mutuallyf€rent subset of the MIT+CMU dataset used or any other

comparable. implementation details.
The speed and the error rates of a WaldBoost classifier

are influenced by the classifier length. To examine this ef-

fect, four classifiers of different lengths (300, 400, 50@ an

600 weak classifiers) were compared. The average evalua-

tion time s (for definition see (1)) for these four classifiers | this paper, the two-class classification problems with
is reported in Table 1. As expected, the average evaluationy decision quality and time trade-off are formulated in the
time decreases when less weak classifiers are used. HoWsamework of the sequential decision-making. We adopted

ever, shortening of the classifier affects thg detectioes.rat the optimal SPRT test and enlarged its applicability to prob
as well. The ROC curves for the four classifiers are depictedjems with dependent measurements.

in Figure 2. Detection rates are comparable for the classi-

! L o In the proposed WaldBoost algorithm, the measurements
fiers cpn3|st|ng of 400.’ 500 and 600 weak classifiers but theare selected and ordered by the AdaBoost algorithm. The
detection rate drops significantly when only 300 weak clas-

sifiers are used. Thus, using the classifier consisting of 4OdOlnt probability density function is approximated by the

eak classifiers onlv mav be preferred for its faster evalu- class-conditional response of the sequence of strong clas-
We m y may b€ p ! Vall- sifiers. To reduce the effect of inaccurate approximation
ation. However, further reducing the classifier length tead

: i ) in early cycles of training, a conservative method usin
to a substantial detection results degradation. y & 9 9

. . _ Parzen windows with a kernel width set according to the
For a comparison of the WaldBoost classifier length with oversmoothing rule was used.

the other methods see Table 2. From the compared methods, The pronosed alaorithm was tested on the face detection
the WaldBoost classifier needs the least number of weak prop 9 ;
problem. On a standard dataset, the results are superior to

class!f!ers, or in other words it produces the most compactthe state-of-the-art methods in average evaluation tinde an
classifier. . . )
comparable in detection rates. In the face detection cntex

i TPe bo:to(rjn rp\{vg Table f showsﬁthe da;/eragtﬁ evalua- the WaldBoost algorithm can be also viewed as a theoret-
lon |mesb 0 ?C'S'Ok SI (sorpe IMes Ire ters ; 0315 eaver- cJ’l;:allly justifiable "boosted cascade of classifiers” progbse
age number of weak classifiers evaluated) for the compare y Viola and Jones [8].

methods. The WaldBoost learning results in the fastest clas
sifier among the compared methods except for the Viola-
Jones method which, despite its high speed gains Signiﬁ'ACknOWIedgmentS
cantly worse detection results.

To conclude the experiments, the WaldBoost algorithm
applied to the face detection problem reduced the number The authors were supported by The Czech Ministry of
of measurements needed for a reliable classification. TheEducation under project 1M6840770004 and by The Euro-
detection rates reached by the proposed algorithm are compean Commission under project IST-004176.

6. Summary and Conclusions
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Figure 2. The effect of reducing the number of weak classifier
WaldBoost classifier on the detection rate.
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